ГЛАВНАЯНОВОСТИГОСТЕВАЯ КНИГАУСЛУГИ И ЦЕНЫКОНТАКТЫБИБЛИОТЕКА
 
  Вернуться назад

Библиотека

Все документы предоставляются в формате *.pdf, *.djvu

  Скачать PDF-reader
  Скачать DJVU-reader
ХИМИЯ ВОДЫ

Гумусовые кислоты

Гуминовые и фульвокислоты, объединяемые под названием гумусовые кислоты, нередко составляют значительную долю органического вещества природных вод и представляют собой сложные смеси биохимически устойчивых высокомолекулярных соединений. Главным источником поступления гумусовых кислот в природные воды являются почвы и торфяники, из которых они вымываются дождевыми и болотными водами. Значительная часть гумусовых кислот вносится в водоемы вместе с пылью и образуется непосредственно в водоеме в процессе трансформации "живого органического вещества". Гумусовые кислоты в поверхностных водах находятся в растворенном, взвешенном и коллоидном состояниях, соотношения между которыми определяются химическим составом вод, рН раствора, биологической ситуацией в водоеме и другими факторами. Наличие в структуре фульво- и гуминовых кислот карбоксильных и фенолгидроксильных групп, аминогрупп способствует образованию прочных комплексных соединений гумусовых кислот с металлами. Некоторая часть гумусовых кислот находится в виде малодиссоциированных солей - гуматов и фульватов. В кислых водах возможно существование свободных форм гуминовых и фульфокислот. Гумусовые кислоты в значительной степени влияют на органолептические свойства воды, создавая неприятный вкус и запах, затрудняют дезинфекцию и получение особо чистой воды, ускоряют коррозию металлов. Они оказывают влияние также на состояние и устойчивость карбонатной системы, ионные и фазовые равновесия и распределение миграционных форм микроэлементов. Повышенное содержание гумусовых кислот может оказывать отрицательное влияние на развитие водных растительных и животных организмов в результате резкого снижения концентрации растворенного кислорода в водоеме, идущего на их окисление, и их разрушающего влияния на устойчивость витаминов. В то же время при разложении гумусовых кислот образуется значительное количество ценных для водных организмов продуктов, а их органоминеральные комплексы представляют наиболее легко усваиваемую форму питания растений микроэлементами [14], [31]. Почвенные кислоты: гуминовые (в щелочной среде) и особенно хорошо растворимые фульвокислоты играют наибольшую роль в миграции тяжелых металлов [13].

Гуминовые кислоты

Гуминовые кислоты содержат циклические структуры и различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.). Молекулярная масса их колеблется в широком интервале (от 500 до 200 000 и более). Относительная молекулярная масса условно принимается равной 1300 - 1500. Содержание гуминовых кислот в поверхностных водах обычно составляет десятки и сотни микрограммов в 1 дм3 по углероду, достигая нескольких миллиграммов в 1 дм3 в природных водах лесных и болотистых местностей, придавая им характерный бурый цвет. В воде многих рек гуминовые кислоты не обнаруживаются [31]. Гуминовые кислоты — это темноокрашенные высокомолекулярные азотсодержащие органические кислоты. Они нерастворимы в минеральных и органических кислотах, но хорошо растворяются в растворах гидроксида натрия, аммиака, соды с образованием коллоидных растворов темно-вишневой или коричнево-черной окраски. Из растворов гуминовые кислоты осаждаются солями алюминия, железа, кальция и магния в виде студнеобразного осадка. При взаимодействии с катионами щелочных и щелочно-земельных металлов гуминовые кислоты образуют соли — гуматы. Гуматы натрия, калия и аммония хорошо растворимы в воде, поэтому вымываются из почвы. Гуматы кальция и магния в воде не растворяются и хорошо закрепляются в почвах.

Фульвокислоты

Фульвокислоты являются частью гумусовых кислот, не осаждающихся при нейтрализации из раствора органических веществ, извлеченных из торфов и бурых углей обработкой щелочью. Фульвокислоты представляют соединения типа оксикарбоновых кислот с меньшим относительным содержанием углерода и более выраженными кислотными свойствами [14]. Хорошая растворимость фульвокислот по сравнению с гуминовыми кислотами является причиной их более высоких концентраций и распространения в поверхностных водах. Концентрации фульвокислот, как правило, превышает содержание гуминовых кислот в 10 раз и более [31]. Фульвокислоты — это желтоокрашенные высокомолекулярные азотсодержащие органические кислоты. В них в отличие от гуминовых кислот содержится меньше углерода, но больше кислорода и водорода (см. табл.)
Все соли фульвокислот (фульваты калия, натрия, кальция и магния) растворимы в воде и слабо закрепляются в почвах. Фульвокислоты обладают сильнокислой реакцией, энергично разрушают минеральную часть почвы, вызывая развитие подзолообразовательного процесса.

Химический состав гуминовых кислот и фульвокислот, %
Гумусовые вещества С Н О N
Гуминовые кислоты 5,0...6,2 2,8...6 31...40 2...6
Фульвокислоты 4,4...4,9 3,5...5 44...49 2...4

Азот органический

Под "органическим азотом" понимают азот, входящий в состав органических веществ, таких, как протеины и протеиды, полипептиды (высокомолекулярные соединения), аминокислоты, амины, амиды, мочевина (низкомолекулярные соединения). Значительная часть азотсодержащих органических соединений поступает в природные воды в процессе отмирания организмов, главным образом фитопланктона, и распада их клеток. Концентрация этих соединений определяется биомассой гидробионтов и скоростью указанных процессов. Другим важным источником азотсодержащих органических веществ являются прижизненные их выделения водными организмами. К числу существенных источников азотсодержащих соединений относятся также атмосферные осадки, в которых концентрация азотсодержащих органических веществ близка к наблюдающейся в поверхностных водах. Значительное повышение концентрации этих соединений нередко связано с поступлением в водные объекты промышленных, сельскохозяйственных и хозяйственно-бытовых сточных вод. На долю органического азота приходится 50-75% общего растворенного в воде азота. Концентрация органического азота подвержена значительным сезонным изменениям с общей тенденцией к увеличению в вегетационный период (1,5-2,0 мг/дм3) и уменьшению в период ледостава (0,2-0,5 мг/дм3). Распределение органического азота по глубине неравномерно - повышенная концентрация наблюдается, как правило, в зоне фотосинтеза и в придонных слоях воды [3], [14], [31], [41].

Мочевина

Мочевина (карбамид), будучи одним из важных продуктов жизнедеятельности водных организмов, присутствует в природных водах в заметных концентрациях: до 10 - 50 % суммы азотсодержащих органических соединений в пересчете на азот. Значительные количества мочевины поступают в водные объекты с хозяйственно-бытовыми сточными водами, с коллекторными водами, а также с поверхностным стоком в районах использования ее в качестве азотного удобрения. Карбамид может накапливаться в природных водах в результате естественных биохимических процессов как продукт обмена веществ водных организмов, продуцироваться растениями, грибами, бактериями как продукт связывания аммиака, образующегося в процессе диссимиляции белков. Значительное влияние на концентрацию мочевины оказывают внеорганизменные ферментативные процессы. Под действием ферментов происходит распад мононуклеотидов отмерших организмов с образованием пуриновых и пиримидиновых оснований, которые в свою очередь распадаются за счет микробиологических процессов до мочевины и аммиака. Под действием специфического фермента (уреазы) мочевина распадается до аммонийного иона и потребляется водными растительными организмами. Повышение концентрации мочевины может указывать на загрязнение водного объекта сельскохозяйственными и хозяйственно-бытовыми сточными водами. Оно обычно сопровождается активизацией процессов утилизации мочевины водными организмами и потреблением кислорода, приводящего к ухудшению кислородного режима. В речных незагрязненных водах концентрация мочевины колеблется в пределах 60-300 мкг/дм3, или в пересчете на азот 30-150 мкг/дм3, в водохранилищах и озерах - от 40 до 250 мкг/дм3. Наиболее высокая концентрация ее обнаруживается вещества пробах, отобранных в летне-осенний период (июль-сентябрь) [6], [14], [31]. ПДКвр — 80 мг/дм3 [4].

Амины

К основным источникам образования и поступления в природные воды аминов следует отнести:
  • декарбоксилирование при распаде белковых веществ под воздействием декарбоксилаз бактерий и грибов и аминирование;
  • водоросли;
  • атмосферные осадки;
  • сточные воды анилино-красочных предприятий.
Амины присутствуют преимущественно в растворенном и отчасти в сорбированном состоянии. С некоторыми металлами они могут образовывать довольно устойчивые комплексные соединения. Концентрация аминов в воде рек, водохранилищ, озер, атмосферных осадках колеблется в пределах 10 - 200 мкг/дм3. Более низкое содержание характерно для малопродуктивных водных объектов. Амины токсичны. Обычно принято считать, что первичные алифатические амины токсичнее вторичных и третичных, диамины токсичнее моноаминов; изомерные алифатические амины более токсичны, чем алифатические амины нормального строения; моноамины с большей вероятностью обладают гепатотоксичностью, а диамины - нефротоксичностью. Наибольшей токсичностью и потенциальной опасностью среди алифатических аминов характеризуются непредельные амины из-за наиболее выраженной у них способности угнетать активность аминооксидаз [6]. Амины, присутствуя в водных объектах, отрицательно влияют на органолептические свойства воды, могут усугублять заморные явления. ПДКв для различных видов аминов - от 0,01 до 170 мг/дм3 [14].

Анилин

Анилин относится к ароматическим аминам и представляет собой бесцветную жидкость с характерным запахом. В поверхностные воды анилин может поступать со сточными водами химических (получение красителей и пестицидов) и фармацевтических предприятий. Анилин обладаеет способностью окислять гемоглобин в метгемоглобин. ПДКв — 0,1 мг/дм3 (лимитирующий признак вредности — санитарно-токсикологический), ПДКвр — 0,0001 мг/дм3 [4], [33].

Уротропин

Гексаметилентетрамин — (CH2)6N4. ПДКв — 0,5 мг/дм3 [4], [33].

Нитробензол

Нитробензол - бесцветная или зеленовато-желтая маслянистая жидкость с запахом горького миндаля. Нитробензол токсичен, впитывается через кожу, оказывает сильное действие на центральную нервную систему, нарушает обмен веществ, вызывает заболевания печени, окисляет гемоглобин в метгемоглобин [6]. ПДКв — 0,2 мг/дм3 (лимитирующий признак вредности — санитарно-токсикологический), ПДКвр — 0,01 мг/дм3 [4], [33].

   Создание сайта: студия «Unstandard»
   Дизайн: С.Черкасов, комп.поддержка: Н.Ксенофонтов

наверх