ГЛАВНАЯНОВОСТИГОСТЕВАЯ КНИГАУСЛУГИ И ЦЕНЫКОНТАКТЫБИБЛИОТЕКА
 
  Вернуться назад

Библиотека

Все документы предоставляются в формате *.pdf, *.djvu

  Скачать PDF-reader
  Скачать DJVU-reader

ХИМИЯ ВОДЫ

Сера органическая

Метилмеркаптан

Метилмеркаптан является продуктом метаболизма живых клеток. Он также поступает со стоками предприятий целлюлозной промышленности (0,05 - 0,08 мг/дм3). В водном растворе метилмеркаптан является слабой кислотой и частично диссоциирует (степень диссоциации зависит от рН среды). При рН =10,5 около 50% метилмеркаптана находится в ионной форме, при рН =13 происходит полная диссоциация. Метилмеркаптан стабилен менее 12 часов, образует соли — меркаптиды [2], [3]. ПДКв — 0,0002 мг/дм3 (лимитирующий признак вредности — органолептический) [4], [33].

Диметилсульфид

Диметилсульфид выделяется водорослями (Oedogonium, Ulothrix) в ходе нормальных физиологических процессов, имеющих существенное значение в круговороте серы. В поверхностные воды диметилсульфид может поступать также со стоками предприятий целлюлозной промышленности (0,05 - 0,08 мг/дм3). Концентрации диметилсульфида в морях достигает 12-27·10-6 мг/дм3 (повышенные концентрации наблюдаются в местах скопления водорослей). Диметилсульфид долго не может сохраняться в воде водоемов (стабилен от 3 до 15 суток). Он частично подвергается превращениям при участии водорослей и микроорганизмов, а в основном испаряется в воздух. В концентрациях 1-10 мкг/дм3 диметилсульфид обладает слабой мутагенной активностью [2]. ПДКв — 0,01 мг/дм3 (лимитирующий показатель вредности — органолептический) [4], [33].

Диметилдисульфид

Диметилдисульфид образуется в клетках различных представителей флоры и фауны в ходе метаболизма сераорганических соединений, а также может поступать со стоками предприятий целлюлозной промышленности. ПДКв — 0,04 мг/дм3 [4], [33].

Карбонильные соединения

К карбонильным относятся соединения, содержащие карбонильные и карбоксильные группы (альдегиды, кетоны, кетокислоты, полуфункциональные карбонилсодержащие вещества). В природных водах карбонильные соединения могут появляться в результате прижизненнных выделений водорослей, биохимического и фотохимического окисления спиртов и органических кислот, распада органических веществ типа лигнина, обмена веществ бактериобентоса. Постоянное присутствие карбонильных соединений среди кислородных соединений нефтей и в воде, контактирующей с залежами углеводородов, позволяет рассматривать последние в качестве одного из источников обогащения природных вод этими веществами. Источником этих соединений являются также наземные растения, в которых образуются альдегиды и кетоны алифатического рядов и фурановые производные. Значительная часть альдегидов и кетонов поступает в природные воды в результате деятельности человека. Основными факторами, обусловливающими уменьшение концентрации карбонильных соединений, являются их способность к окислению, летучесть и относительно высокая трофическая ценность отдельных групп карбонилсодержащих веществ. В поверхностных водах карбонильные соединения находятся в основном в растворенной форме. Средняя концентрация их в воде рек и водохранилищ колеблется от 1 до 6 мкмоль/дм3, несколько выше она (6 - 40 мкмоль/дм3) в озерах дистрофного типа. Максимальные концентрации в водах нефтяных и газонефтяных залежей — 40 - 100 мкмоль/дм3.
В воде водных объектов санитарно-бытового водопользования нормируются отдельные соединения с карбонильной группой: метилэтилкетон и циклогексанон (ПДКв 1 мг/дм3) по органолептическому показателю, формальдегид (ПДКв 0,5 мг/дм3) по санитарно-токсикологическому показателю, ацетон - по общесанитарному показателю [14], [31].

Ацетон

В природные воды ацетон поступает со сточными водами фармацевтических, лесохимических производств, производства лаков и красок, пластмасс, кинопленки, ацетилена, ацетальдегида, уксусной кислоты, оргстекла, фенола, ацетона. В концентрациях 40-70 мг/дм3 ацетон придает воде запах, при 80 мг/дм3 — привкус. В воде ацетон малостабилен — при концентрациях 20 мг/дм3 на 7 сутки исчезает. Для водных организмов ацетон сравнительно малотоксичен. Токсические концентрации для молодых дафний 8300, для взрослых 12900 мг/дм3; при 9300 мг/дм3 дафнии гибнут через 16 часов. Ацетон - наркотик, поражающий все отделы ЦНС. Кроме того он оказывает эмбриотоксическое действие [7]. ПДКв — 2,2 мг/дм3 (лимитирующий показатель вредности — общесанитарный), ПДКвр — 0,05 мг/дм3 (лимитирующий показатель вредности — токсикологический) [33].

Формальдегид

Формальдегид поступает в водную среду с промышленными и коммунальными сточными водами. Он содержится в сточных водах производств основного органического синтеза, пластмасс, лаков, красок, лекарственных препаратов, предприятий кожевенной, текстильной и целлюлозно-бумажной промышленностей. В дождевой воде городских районов зарегистрировано присутствие формальдегида. Формальдегид - сильный восстановитель. Он конденсируется с аминами, с NH3 образует уротропин. В водной среде формальдегид подвергается биодеградации. В аэробных условиях при 20 °С разложение продолжается около 30 часов, в анаэробных - примерно 48 часов. В стерильной воде формальдегид не разлагается. Биодеградация в водной среде обусловлена действием Pseudomonas, Flavobacterium, Mycobacterium, Zanthomonas. Подпороговая концентрация, не влияющая на санитарный режим водоемов и сапрофитную микрофлору, 5 мг/дм3; максимальная концентрация, не вызывающая при постоянном воздействии в течение сколь угодно длительного времени нарушение биохимических процессов, 5 мг/дм3; максимальная концентрация, не влияющая на работу биологических очистных сооружений, 1000 мг/дм3. БПК5 = 0,68 мг/дм3, БПКполн = 0,72 мг/дм3, ХПК = 1,07 мг/дм3. Запах ощущается при 20 мг/дм3. При 10 мг/дм3 формальдегид оказывает токсическое действие на наиболее чувствительные виды рыб. При 0,24 мг/дм3 ткани рыб приобретают неприятный запах. Формальдегид оказывает общетоксическое действие, вызывает поражение ЦНС, легких, печени, почек, органов зрения. Возможно кожно-резорбтивное действие. Формальдегид обладает раздражающим, аллергенным, мутагенным, сенсибилизирующим, канцерогенным действием [7]. ПДКв — 0,05 мг/дм3 (лимитирующий показатель вредности — санитарно-токсикологический), ПДКвр — 0,25 мг/дм3 (лимитирующий показатель вредности — токсикологический) [33].

Углеводы

Группа органических соединений, которая объединяет моносахариды, их производные и продукты конденсации - олигосахариды и полисахариды. В поверхностные воды углеводы поступают главным образом вследствие процессов прижизненного выделения водными организмами и их посмертного разложения. Значительные количества растворенных углеводов попадают в водные объекты с поверхностным стоком в результате вымывания их из почв, торфяников, горных пород, с атмосферными осадками, со сточными водами дрожжевых, пивоваренных, сахарных, целлюлозно-бумажных и других заводов. В поверхностных водах углеводы находятся в растворенном и взвешенном состоянии в виде свободных редуцирующих сахаров (смесь моно-, ди- и трисахаридов) и сложных углеводов.Концентрация в речных водах свободных редуцирующих сахаров и сложных углеводов в пересчете на глюкозу составляет 100-600 и 250-1000 мкг/дм3. В воде водохранилищ концентрация их соответственно равна 100-400 и 200-300 мкг/дм3, в воде озер пределы возможных колебаний концентраций редуцирующих сахаров (80-65000 мкг/дм3) и сложных углеводов (140-6900 мкг/дм3) более широки, чем в реках и водохранилищах. В морских водах суммарная концентрация углеводов составляет 0-8 мг/дм3, в атмосферных осадках 0-4 мг/дм3. Наблюдается корреляция между содержанием углеводов и интенсивностью развития фитопланктона [14], [31].

Жиры

Жиры представляют собой полные сложные эфиры глицерина и жирных кислот (стеариновой, пальмитиновой, олеиновой). Жиры, присутствующие в природных водах, являются главным образом результатом метаболизма растительных и животных организмов и их посмертного разложения. Жиры образуются при фотосинтезе и биосинтезе и входят в состав внутриклеточных и резервных липидов. Высокие концентрации жиров в воде связаны со сбросом в водные объекты сточных вод предприятий пищевой и кожевенной промышленностей, а также хозяйственно-бытовых сточных вод. Понижение содержание жиров в природных водах связано с процессами их ферментативного гидролиза и биохимического окисления. Жиры находятся в поверхностных водах в растворенном, эмульгированном и сорбированном взвешенными веществами и донными отложениями состояниях. Они входят в состав более растворимых сложных соединений с белками и углеводами, которые находятся в воде как в растворенном, так и в коллоидном состояниях. Попадая в водный объект в повышенных концентрациях, жиры ухудшают его кислородный режим, органолептические свойства воды, стимулируют развитие микрофлоры. Содержание жиров в поверхностных водах колеблется от сотых долей миллиграмма до нескольких миллиграммов в 1 дм3 [14], [31].


   Создание сайта: студия «Unstandard»
   Дизайн: С.Черкасов, комп.поддержка: Н.Ксенофонтов

наверх